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SUMMARY

Direct numerical simulation techniques for particulate �ow by the �ctitious boundary method (FBM)
are presented. The �ow is computed by a multigrid �nite element solver and the solid particles are
allowed to move freely through the computational mesh which can be chosen independently from the
particles of arbitrary shape, size and number. The interaction between the �uid and the particles is taken
into account by the FBM in which an explicit volume based calculation for the hydrodynamic forces
is integrated. A new collision model based on papers by Glowinski, Joseph, Singh and coauthors is
examined to handle particle–particle and particle–wall interactions. Numerical tests show that the present
method provides a very e�cient approach to directly simulate particulate �ows with many particles.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Liquids containing large solid particles are common in many industrial processes, such as
foods containing particles, slurry �ows, mining extraction, �uidization of catalyst beds, sepa-
ration process using cyclones, etc. The phenomena of such particulate �ows are also visible
everywhere around our living environments, for instance �ow around high-rise buildings, the
drag force induced by driving a car accelerating in the wind, ocean current interaction with
the o�shore structures, sedimentation �ow in estuary and sand �ow in desert, etc. From the
numerical point of view, particulate �ows are quite hard to simulate since both the incom-
pressible �uid velocity and the domain in which it is de�ned are unknown. It can require a
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huge amount of time for the frequent generation or deformation of the computational grids
when the corresponding boundaries are complex and changing in time; especially for the
case with large numbers of particles (greater than 10 000), the interaction between �uid and
particles as well as the collision between particles gives further complexity to the problem.
So far, such problems have motivated the development of numerous algorithms which can

be broadly classi�ed into two families. The �rst one is an Eulerian approach which uses a
�xed mesh (or a mesh independent of the particles) that covers the whole domain where
the �uid may be present. One popular example of this approach is the class of distributed
Lagrange multiplier (DLM)=�ctitious domain methods proposed by Glowinski, Joseph and
coauthors [1–3]. The second type is a Lagrangian approach which is based on a moving mesh
following the motion of the boundary of the particles in the �uid. As the mesh motion within
the �uid can be de�ned arbitrarily, this approach is usually referred to as Arbitrary Lagrangian
Eulerian (ALE). Hu, Joseph and Crochet [4, 5] as well as Maury [6, 7] have applied the ALE
to �uid–particle �ows. One big advantage of the Eulerian approaches over the Lagrangian
approaches is that the computational mesh can remain unchanged such that the CPU cost per
time step can be signi�cantly decreased—less computational e�ort due to saving the expensive
mesh generation—and special techniques can be easily incorporated into standard CFD codes
which mostly allow �xed computational grids without local adaptivity; however, the resulting
accuracy is often not clear. Therefore, our overall aim is to deal successfully with moving
boundaries such that the accuracy of the numerical approximation is su�ciently high while
at the same time also the computational cost is signi�cantly decreased.
In the spirit of the Eulerian approaches, we present an e�cient �ctitious boundary method

(FBM) for the detailed simulation of particulate �ows. The method is based on an unstructured
FEM background grid. The motion of the solid particles is modelled by the Newton–Euler
equations. Based on the boundary conditions applied at the interface between the particles
and the �uid which can be seen as an additional constraint to the governing Navier–Stokes
equations, the �uid domain can be extended into the whole domain which covers both �uid
and particle domains. The FBM starts with a coarse mesh which may contain already many
of the geometrical �ne-scale details, and employs a (rough) boundary parametrization which
su�ciently describes all large-scale structures with regard to the boundary conditions. Then,
all �ne-scale features are treated as interior objects such that the corresponding components
in all matrices and vectors are unknown degrees of freedom which are implicitly incorpora-
ted into all iterative solution steps. The considerable advantage of the FBM is that the total
computational domain does not have to change in time, and has to be meshed only once—or
more precisely: it can be handled independently from the �ow features [8, 9].
For studying the interaction between �uid and solid, the e�cient and accurate calculation

of forces acting on the moving rigid bodies is very important. However, in the FBM, it is
not straightforward to compute explicitly these forces, because the hydrodynamic drag and
lift forces acting on the moving solid bodies are a very delicate quantity. They include the
results directly on the wall surface of the moving rigid bodies which however is represented
only implicitly in the �ctitious boundary method due to the use of a �xed grid rather than
a body-conformal grid. The FBM di�ers only between ‘inside’ and ‘outside’ of a particle,
but it does not de�ne the wall surface of the particle. Therefore, the integration of forces
acting only on the wall surface of the rigid bodies cannot be implemented directly in the
�ctitious boundary method. For overcoming this di�culty, a volume integration instead of the
conventional surface integral for the calculation of the hydrodynamic forces by introducing an
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auxiliary function has been proposed in References [10, 11]. Obviously, in such volume based
calculations, the explicit reconstruction of the wall surface of the moving rigid bodies can be
avoided. In this paper, we expand the implementation of this volume integral approach with an
auxiliary function to the �nite element method and the FBM, and we introduce corresponding
data structures for the e�cient handling of many particles.
For treating more than one particle in �uid, a collision model is needed to prevent particles

from interpenetrating each other. A systematic study of collisions of particles in the �ow
can be found in Reference [12]. Collisions or near-collisions between the particles present
severe di�culties in direct simulations of particulate �ows. Even near-collisions can signif-
icantly increase the cost of a simulation, because in order to simulate the particle–particle
interaction mechanism in a direct manner, the �ow �elds in the narrow gap between the con-
verging particle surfaces must be accurately resolved. The corresponding element size in La-
grangian approaches has to be decreased, leading to extremely small elements and signi�cantly
increased numbers of unknowns to be solved for. In such simulations, numerical problems
are likely to occur when the particles get very close to each other, i.e. the mesh is to be
re�ned in the gap zone, therefore it is computationally expensive. To handle this problem
numerically, several collision models have been proposed in the literature. Glowinski, Joseph,
Pan and coauthors [1–3] have described repulsive force models to prevent the particles from
overlapping each other. Singh et al. [13] proposed another repulsive force model which al-
lows the particles to come arbitrarily close and even slightly to overlap each other. In ad-
dition to using the concept of repulsive forces to construct collision models, there are also
other ways to form such models, for example, conservation collision models which are based
on the conservation of linear momentum and kinetic energy [14], lubrication collision mod-
els [15] and stochastic collision models [16] which are based on physical properties of the
particles, as well as semi-experiential collision models [17], etc. In this paper, following
those models proposed by Glowinski, Joseph, Singh and coauthors, we describe a new re-
pulsive force model which cannot only prevent the particles from getting too close to each
other, it can also deal with the case of particle overlapping when numerical simulations
bring the particles very close or even overlapping due to unavoidable numerical truncation
errors.
The subsequent parts of the paper are arranged as follows: In Section 2, the governing

equations for the coupled system of �uid and particles are given, and a new treatment of
collisions based on those models proposed by Glowinski, Joseph and Singh is presented. The
numerical solution process for solving the coupled system of �uid and particles is described
in Section 3. The explicit �ctitious boundary method (FBM) and the proposed volume based
integration for hydrodynamic force calculations are presented. Then, the numerical discretiza-
tion, solution procedure, the algorithmic details, and the time reducing techniques for dealing
with large numbers of particles are given. In Section 4, extensive numerical test problems are
presented. First of all, two con�gurations of two-dimensional �ow around a circular body in
a channel are used for the validation of hydrodynamic force calculations based on the volume
integration in context of the presented multigrid FBM. Then, �ows with one rotating and
moving particle are examined to validate the prediction of angular and translational velocities
by the presented FBM. Finally, several cases of multiple particles in a �uid are examined
to evaluate the collision model and the e�ciency of the presented FBM for the simula-
tion of particulate �ows with large numbers of particles. The paper ends with a conclusion
in Section 5.
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2. GOVERNING EQUATIONS

2.1. Model of incompressible �ow

Our aim is to compute incompressible �ow in interaction with N particles of mass Mi (i=1;
: : : ; N ) in a �uid with density �f and viscosity �. Denote �f (t) as the domain occupied by
the �uid at time t, and �i(t) as the domain occupied by the ith particle. So, the �uid �ow
obeys the following Navier–Stokes equations in �f (t)

�f

(
@u
@t
+ u · ∇u

)
− ∇ ·�=0; ∇ · u=0 ∀t ∈ (0; T ) (1)

where � is the total stress tensor in the �uid phase, de�ned as

�=−pI+ �f [∇u+ (∇u)T] (2)

Here, I is the identity tensor, �f =�f · �; p is the pressure and u is the �uid velocity.
Let �T =�f (t) ∪ {�i(t)}Ni=1 be the entire computational domain which shall be independent
of t. Dirichlet- and Neumann-type boundary conditions can be imposed on the outer boundary
�= @�f (t). Since �f =�f (t) and �i = �i(t) are always depending on t, we drop t in all
following notations.

2.2. Model of particle motion

In the �uid domain, the particles are allowed to translate and rotate with gravity, �uid forces
acting on them and collision forces (repulsive forces or lubrication forces) in particle–particle
or particle–wall interactions. The equations that govern this motion for each particle are the
following Newton–Euler equations, i.e. the translational velocities Ui and angular velocities !i
of the ith particle satisfy

Mi
dUi
dt
=(�Mi)g+ Fi + F′

i ; Ii
d!i
dt
+!i × (Ii!i)=Ti (3)

where Mi is the mass of the ith particle (i = 1; : : : ; N ), Ii is the moment of the inertia tensor,
�Mi is the mass di�erence between the mass Mi and the mass of the �uid occupying the
same volume, g is the gravity vector, F′

i are collision forces acting on the ith particle due
to other particles which come close to each other. We assume that the particles are smooth
without tangential forces of collisions acting on them. The details of the collision model will
be discussed in the following subsection. Fi and Ti are the resultants of the hydrodynamic
forces and the torque about the centre of mass acting on the ith particle which are calculated
by

Fi=(−1)
∫
@�i
� · n d�i ; Ti=(−1)

∫
@�i
(X −Xi)× (� · n) d�i (4)

where � is the total stress tensor in the �uid phase de�ned by Equation (2), Xi is the position
of the mass centre of the ith particle, @�i is the boundary of the ith particle, n is the unit
normal vector on the boundary @�i pointing outward of the �ow region. The position Xi of
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the ith particle and its angle �i are obtained by integration of the kinematic equations, i.e.

dXi
dt
=Ui ;

d�i
dt
=!i (5)

No-slip boundary conditions are applied at the interface @�i between the ith particle and
the �uid, i.e. for any X∈ ��i, the velocity u(X) is de�ned by

u(X)=Ui +!i × (X −Xi) (6)

2.3. Collision models

If there are two or more particles in the �uid, a collision model is needed to prevent the
particles from interpenetrating each other. Theoretically, smooth particle–particle or boundary
wall–particle collisions do not take place in �nite time in the continuous system since there
are repulsive forces (or lubrication forces) to prevent these collisions in the case of viscous
�uids [2, 3, 18]. However, collisions occur in nature and particles can contact each other in
numerical simulations since the gap can become exceedingly small if special precautions
are not taken, and numerical errors may also allow contact or even overlap in simulations.
Collisions between particles present severe di�culties in direct simulations of particulate �ows.
Even near-collisions can signi�cantly increase the cost of a simulation, because in order to
simulate the particle–particle interaction mechanism, the �ow in the narrow gap between the
converging particles must be accurately resolved. The required element size decreases with
the gap width, leading to extremely small elements and signi�cantly increased numbers of
unknowns to be solved for.
For simplicity, in most cases it is assumed that the collisions are smooth, which means

that if two rigid bodies collide under the e�ect of gravity and hydrodynamical forces, the
rigid body velocities coincide at the points of contact. Glowinski, Joseph and coauthors [2, 3]
proposed a repulsive force model in which an arti�cial short-range repulsive force between
particles is introduced keeping the particle surfaces more than one element (the range of the
repulsive force) apart from each other. In this model, overlapping of the regions occupied
by the rigid bodies is not allowed since con�icting rigid body motion constraints from two
di�erent particles are not imposed at the same velocity nodes. However, in numerical calcu-
lations, the overlapping of particles could happen. For solving this problem, Singh, Joseph
and coauthors [13] suggested a modi�ed repulsive force model in which the particles are al-
lowed to come arbitrarily close and even to overlap slightly each other. When con�icting rigid
body motion constraints from two di�erent particles are applied onto a velocity node, then
the constraint from the particle that is closer to that node is used. A repulsive force is only
applied when the particles overlap each other. In both models, a short-range repulsion force
between particles which are in near contact or slightly overlap is introduced, and the choice of
sti�ness parameters is very important. In the general case, there is no rigorous theory to deter-
mine the ideal values of these parameters. So, they can be referred to as parametric models.
For avoiding the di�cult work of choosing the parameters in collision models, Diaz-Goano
and Minev [19] proposed another collision treatment which leads to a nonparametric model.
In this model, �rst of all there is a check if the separation distance between the particles is
larger than a given threshold value calculated as a function of the particle diameters and the
mesh resolution. If the distance is less than this value, then the repulsive force is calculated
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iteratively so that both particles move along the line that passes through the centres of mass
of both particles such that the minimum distance is still maintained.
Following those models proposed by Glowinski, Joseph, Singh and coauthors, we examine

another collision model with a new de�nition of short range repulsive forces which cannot
only prevent the particles from getting too close, it can also deal with the case of overlapping
to each other when numerical simulations bring the particles very close due to unavoidable
numerical truncation errors. For the particle–particle collisions, the repulsive force is deter-
mined as

FPi; j=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for di; j¿Ri + Rj + �

1
�P
(Xi −Xj)(Ri + Rj + �− di; j)2 for Ri + Rj6di; j6Ri + Rj + �

1
�′P
(Xi −Xj)(Ri + Rj − di; j) for di; j6Ri + Rj

(7)

where Ri and Rj are the radius of the ith and jth particle, Xi and Xj are the coordinates of the
centres, di; j= |Xi−Xj| is the distance between the mass centres, � is the range of the repulsive
force (usually �=0:5∼ 2:5�h;�h is the mesh size), �P and �′P are small positive sti�ness
parameters for particle–particle collisions. If the �uid is su�ciently viscous, and ���h as
well as �i=�f are of order 1 (�i is the density of the ith particle, �f is the �uid density), then
we can take �P � (�h)2 and �′P ��h in the calculations. For the particle-wall collisions, the
corresponding repulsive force reads

FWi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for d′
i¿2Ri + �

1
�W
(Xi −X′

i)(2Ri + �− d′
i )
2 for 2Ri6d′

i62Ri + �

1
�′W
(Xi −X′

i)(2Ri − d′
i ) for d′

i62Ri

(8)

where X′
i is the coordinate vector of the centre of the nearest imaginary particle P

′
i located

on the boundary wall � w.r.t. the ith particle, d′
i = |Xi − X′

i | is the distance between the
mass centres of the ith particle and the centre of the imaginary particle P′

i . �W is a small
positive sti�ness parameter for particle–wall collisions, usually it can be taken as �W = �P=2
and �′W = �

′
P=2 in the calculations. Then, the total repulsive forces (i.e. collision forces) exerted

on the ith particle by the other particles and the walls can be expressed as follows:

F′
i =

N∑
j=1; j �=i

FPi; j + F
W
i (9)

Remark 1
The new expression for the repulsive forces in Equations (7) and (8) has three ranges which
correspond to three di�erent cases, i.e. no collision, coming very close, and slightly overlap-
ping, respectively. Since large overlapping is not a correct physical phenomenon and can also
cause diverging calculations, only small overlapping is allowed in actual computations.
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Figure 1. Visualization for collisions between two ellipses (up) and two squares
(down), starting from left to right.

Remark 2
Most available collision models are derived only for particles with circular shape rather than
for general shaped cases. However, the collision model of Equations (7) and (8) can be
extended in principle to the case of particles with more complex shape, provided that a
careful calculation for the distance between particles is made. The detailed description of a
corresponding collision model for general shapes will be presented in a forthcoming paper.
Figure 1 shows preliminary results of two ellipses and two squares handled by the collision
model in Equations (7) and (8). It is worthy to be noted that Pan, Glowinski and Joseph
have also begun to discuss collisions between noncircular and nonspherical particles in their
recent papers [20, 21].

3. NUMERICAL SOLUTION PROCESS

3.1. Multigrid �ctitious boundary method

In order to solve the coupled system of �uid and particles, see Equations (1)–(5), we consider
an explicit �ctitious boundary approach. In that context, the �uid part, the explicit calculation
of forces and the movement of the particles are treated in a subsequent manner, which is
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obvious in contrast to the (semi-) implicit approaches of Glowinski, Joseph and coauthors [2]
as well as of Patankar et al. [22]. The strategy for solving the above coupled equations by
the explicit �ctitious boundary approach can be summarized as follows:

1. Given the positions and velocities of the particles, solve the �uid equations (1) in the
corresponding �uid domain involving the position of the particles for the boundary
conditions.

2. Calculate the corresponding hydrodynamic forces and the torque acting on the particles
by using Equation (4), and compute the collision forces by Equation (9).

3. Solve Equation (3) to get the translational and angular velocities of the particles, and
then obtain the new positions and velocities of the particles by Equation (5).

4. Use Equation (6) to set the new �uid domain and boundary conditions, and then
advance to solve for the new velocity and pressure of the �uid phase as described
in step 1.

If we directly implement this strategy to solve the coupled system of �uid and particles, we
will �nd that its realization is not straightforward because the �uid domain always changes
with time and is unknown prior to the solution. Equation (1) governing the �uid motion is
active only in the �uid domain �f , while the shape and extent of the �uid domain will
change in time when the particles move. As mentioned before, the Arbitrary Lagrangian
Eulerian (ALE) technique has to remesh the �uid domain which may distort the computa-
tional mesh, and complex and very expensive remeshing work may arise. In order to avoid
this time-consuming deformation and remeshing step, we adopt a simple and e�cient exten-
sion of the �ctitious boundary method (FBM) for the simulation of particulate �ows (see
Reference [8]).
This FBM method is based on a multigrid FEM background grid which covers the whole

computational domain �T and which is allowed to be stationary or adapted in time (see
Section 4.1 concerning aspects of mesh adaptivity for the FBM). It starts with a coarse
mesh which may already contain many of the geometrical details of �i (i=1; : : : ; N ), and
it employs a �ctitious boundary indicator (see Reference [8]) which su�ciently describes
all �ne-scale structures of the particles with regard to the �uid–particle matching conditions
of Equation (6). Then, all �ne-scale features of the particles are treated as interior objects
such that the corresponding components in all matrices and vectors are unknown degrees
of freedom which are implicitly incorporated into all iterative solution steps (see Reference
[9]). Hence, by making use of Equation (6), we can perform calculations for the �uid in the
whole domain �T . The considerable advantage of the multigrid FBM is that the total mixture
domain �T does not have to change in time, and can be meshed only once. The domain of
de�nition of the �uid velocity u is extended according to Equation (6), which can be seen as
an additional constraint to the Navier–Stokes equations (1), i.e.

∇ · u=0 for X∈�T (10a)

�f

(
@u
@t
+ u · ∇u

)
− ∇ ·�=0 for X∈�f (10b)

u(X) =Ui +!i × (X −Xi) for X∈ ��i ; i=1; : : : ; N (10c)
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For the study of interactions between the �uid and the particles, the calculation of the
hydrodynamic forces acting on the moving particles is very important. From Equation (4),
we can see that the surface integrals on the wall surfaces of the particles should be conducted
for the calculation of the forces Fi and Ti. However, in the presented multigrid FBM method,
the shapes of the wall surface of the moving particles are implicitly imposed in the �uid �eld.
If we reconstruct the shapes of the wall surface of the particles, it is not only a time consuming
work, but also the accuracy is only of �rst-order due to a piecewise constant interpolation
from our indicator function. For overcoming this problem, we perform the hydrodynamic
force calculations using a volume based integral formulation. To replace the surface integral
in Equation (4), we introduce a function �i

�i(X)=

{
1 for X∈�i
0 for X∈�T\�i

(11)

where X denotes the coordinates. The importance of such a de�nition of the parameter can
be seen from the fact that the gradient of �i is zero everywhere except at the wall surface of
the ith particle, and equals to the normal vector ni de�ned on the grid, i.e. ni=∇�i (see also
Reference [10]). Then, the hydrodynamic forces acting on the ith particle can be computed
by

Fi=−
∫
�T
� · ∇�i d�; Ti=−

∫
�T
(X −Xi)× (� · ∇�i) d� (12)

Through Equation (12), we can calculate Fi and Ti via the volume integral over the whole
domain �T instead of the surface integral over the wall surface of the ith particle in Equa-
tion (4). The integral over each element covering the whole domain �T is evaluated with a
standard Gaussian quadrature of corresponding high order. Since the gradient ∇�i is nonzero
only near the wall surface of the ith particle, thus the volume integrals need to be com-
puted only in one layer of mesh cells around the ith particle which leads to a very e�cient
treatment.

3.2. Discretization in space and time

One of the common solution approaches for Equation (10) is a separate discretization in
space and time. We �rst semi-discretize in time by one of the usual methods known from the
treatment of ordinary di�erential equations, such as the Backward Euler-, Crank–Nicolson- or
Fractional-step-�-scheme (see References [3, 23]). Then, we obtain a sequence of generalized
stationary Navier–Stokes equations with prescribed boundary values for every time step. Here,
we use the Fractional-step-�-scheme [3] which is a strongly A-stable time stepping approach
and possesses the full smoothing property which is important in the case of rough initial or
boundary data. In each time step, we obtain a nonlinear saddle point problem which has to
be discretized in space. For the spatial discretization, we choose a �nite element approach:
A regular quadrilateral mesh Th for the whole computational domain �T is introduced, where h
is used as a parameter characterizing the maximum width of the elements of Th. To obtain the
�ne mesh Th from a coarser mesh T2h, we simply connect opposite midpoints. In the �ne grid
Th, the old midpoints of T2h become vertices. We choose the nonconforming Q̃1=Q0 element
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pair which uses rotated bilinear shape functions for the velocity spanned by 〈x2 − y2; x; y; 1〉
in 2D and piecewise constants for the pressure in the cells. The nodal values are the mean
values of the velocity over the element edges and the mean values of the pressure over the
elements, rendering this approach nonconforming. This nonconforming Q̃1=Q0 element pair has
several advantageous features. It satis�es the Babu	ska–Brezzi condition without any additional
stabilization, and the stability constant is independent of the shape and size of the elements.
In particular on meshes containing highly stretched and anisotropic cells, the stability and the
approximation property are always satis�ed. In addition, it admits simple upwind strategies
which lead to matrices with certain M -matrix properties. A detailed discussion of these aspects
can be found in References [23, 24].

3.3. Discrete projection scheme

For solving the discrete nonlinear problems after time and space discretizations, we have
to take the following points into account, i.e. treatment of the nonlinearity, treatment of
the incompressibility, and complete outer control like convergence criteria for the overall
outer iteration, number of splitting steps, convergence control, embedding into multigrid, etc.
In general, there are (at least) two possible approaches for solving the discrete problems [25].
One is the so-called full Galerkin schemes: �rst, we treat the nonlinearity by an outer

nonlinear iteration of �xed point- or quasi-Newton type or by linearization via extrapolation
in time, and then we obtain linear subproblems (Oseen equations) which can be solved by a
direct coupled or a splitting approach separately for velocity and pressure. Typical schemes
are preconditioned GMRES-like or multigrid solvers based on smoothers=preconditioners of
type Vanka, SIMPLE or local pressure Schur complement [23]. The disadvantage of these
approaches is the high numerical cost for small time steps which are typical for particulate
�ows. Another possibility are the projection type schemes: �rst, we split the coupled problem
and obtain de�nite problems in u (Burgers equations) as well as in p (Pressure-Poisson
problems). Then we treat the nonlinear problems in u by an appropriate nonlinear iteration or
linearization technique while optimal multigrid solvers are used for the Poisson-like problems.
Classical schemes belonging to this class are the Chorin and van Kan projection schemes and
the discrete projection method, all of them are well suited for dynamic con�gurations which
require small time steps (see Reference [26]).
In this paper, based on the latter approach combined with multigrid methods, we adopt the

discrete projection method (DPM) as special variant of the more general multigrid pressure
Schur complement (MPSC) schemes to solve the discrete nonlinear problems after time and
space discretization. A detailed description of DPM and MPSC schemes has been presented in
Reference [23]. We �rst perform as outer iteration a �xed point iteration, applied to the fully
nonlinear momentum equations. Then, in the inner loop, we solve the corresponding velocity
equations involving linear transport-di�usion problems. Finally, the pressure is updated via a
Pressure Poisson-like problem, and the corresponding velocity �eld is adjusted. Since every
time step requires the solution of linearized Burgers equations and Poisson-like problems,
an optimized multigrid approach is used. The most important components are matrix–vector
multiplication, smoothing operator and grid transfer routines (prolongation and restriction) for
the underlying FEM spaces which have been realized in FeatFlow (see Reference [23] for the
details).
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3.4. Algorithmic details

The whole algorithm of the multigrid FEM and the �ctitious boundary method (FBM) for
particulate �ow can be summarized as follows:

1. Given (initial) particle positions Xi and velocity Ui in the overall domain �T . Next, we
assume that we have �nished the calculations at time tn.

2. Set the �ctitious boundary conditions by using Equation (10c) with the ‘old’ particle
positions Xni and the velocity Uni at time tn.

3. By using the FBM and implementing the discrete projection scheme, solve the �uid
equations of Equations (10a) and (10b) to get the �uid velocity un+1 and the pressure
pn+1 at time tn+1 on the full computational domain �T .

4. Calculate the hydrodynamic forces Fn+1i and Tn+1i exerted on every particle (i=1; : : : ; N )
by using the volume integration formulation of Equation (12).

5. When two particles come too close, the time step has to be reduced. Then, we adopt
several substeps with �tk =K=
 (k=1; : : : ;
;
 is the number of substeps calcula-
tions, K = tn+1− tn) for calculating the collisions and updating the particle positions and
velocities during the collisions. Set Un;0i : =Uni and X

n;0
i : =Xni .

6. Determine the number of substep calculations 
 by


=

⎧⎪⎨
⎪⎩
1 if (di; j)min¿(Ri + Rj)max

MIN
{
10; 1 +MAX

( |di; j − Ri − Rj|
%

)}
if (di; j)min¡(Ri + Rj − %)max

(13)

where % is the maximum penetration distance to be allowed (maximal overlapping range).
7. By using the Newton–Euler equations of Equation (5) to calculate the motion of the
solid particles, we obtain the new interim particle position Xn+1=2; ki and velocity Un+1=2; ki
as well as the new angular velocity !n+1

i and angle �n+1i by

Un+1=2; ki =Un; ki +
(
�Mig
Mi

+
Fni + F

n+1
i

2Mi

)
�tk (14)

Xn+1=2; ki =Xn; ki +
(
�Mig
Mi

+
Fni + F

n+1
i

2Mi

)
(�tk)2 (15)

!n+1i =!ni +
(
Tni + T

n+1
i

2Ii

)
K; �n+1i = �ni +

(
!ni +!

n+1
i

2

)
K (16)

8. Use the collision model of Equations (7) and (8) to calculate the repulsive forces
(F′
i )
n+1; k with the interim particle position Xn+1=2; ki .

9. Update the particle positions and the velocity by the repulsive forces to obtain the new
particle position Xn+1; ki and the velocity Un+1; ki at time tn+1 by

Un+1; ki =Un+1=2; ki +
(F′
i )
n+1

Mi
�tk ; Xn+1; ki =Xn+1=2; ki +

(F′
i )
n+1

Mi
(�tk)2 (17)
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10. Set Un; k+1i :=Un+1; ki and Xn; k+1i :=Xn+1; ki if k¡
, and repeat the steps 7–10.
11. Set Un+1i :=Un+1;
i and Xn+1i :=Xn+1;
i .
12. Advance to the next new time step, set tn := tn+1 and repeat the steps 2–12.

3.5. Data structures for large number of particles

A challenging situation is the case with large numbers of rigid particles, for instance, the
range of 10 000 and more. Indeed, a huge part of the CPU time is required for the force
calculations and the �ctitious boundary settings with increasing number of particles, while the
cost for the Navier–Stokes solver is more or less independent of the number of particles (see
Table II). To make it possible that the presented multigrid FBM method is able to simulate
the particulate �ows with such a large numbers of particles, special techniques are required
for the multigrid FBM which decrease the required CPU time. These hierarchical techniques
include the following aspects:

1. Find the maximum controlling area of each element; on the coarsest mesh level, check
how many particles are inside of the controlling area of each element.

2. On the next �ner mesh level, there is no need to search again for every particle, just
use the information obtained from the previous coarser level. Since every element of the
next �ner level would be also within the previous coarse mesh level, search only those
particles which are within the previous coarse level.

3. Since all midpoints of the previous coarser level become vertices of the next �ner level,
use this information for the midpoints of the previous level mesh already obtained and
assign them directly to the corresponding vertex point on the next �ner mesh level.

4. The vertices or midpoints are possibly occupied by more than one particle (for example,
in the case of overlapping), the values for velocities in these points are obtained by the
average values of the velocities of those particles who occupy the same points.

5. On the �nest mesh, use a new array in the code and assign special values to this array:
if a nodal point is not occupied by any particle, its value is set to 0; if a nodal point
is occupied by the ith particle, its value is set to i. This array helps to reduce the CPU
time for the volume integration of the force calculation.

To evaluate these techniques regarding the CPU time when simulating particulate �ows
with large numbers of particles, we analyse the cases of 10–100 000 particles falling down in
a rectangular cavity �lled with an incompressible Newtonian viscous �uid with and without
these hierarchical techniques. In Table I, ‘NVT’ denotes the number of vertices, ‘NMT’ the
number of edges (midpoints), ‘NEL’ the number of elements and ‘NEQ’ the total number
of unknowns. Table II shows the typical CPU time needed (COMPAQ EV6, 666 MHz) for

Table I. Details of the meshes used in the test calculations.

Level NVT NMT NEL NEQ

1 1406 27 888 13 824 69 600
2 55 777 111 072 55 296 277 440
3 222 145 443 328 221 184 1 107 840
4 886 657 1 771 392 884 736 4 427 520
5 3 542 785 7 081 728 3 538 944 17 702 400
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Table II. Typical CPU time needed in particle �ow calculations (one time step) without (top table) and
with (bottom table) the time reducing hierarchical techniques.

No. of particles = 10 =100 =1000

Level L=3 L=4 L=5 L=3 L=4 L=5 L=3 L=4 L=5

NSE part 24 123 574 20 106 626 22 110 521
Force part 5 20 80 44 176 731 443 1771 7101
Particle part 1 6 26 2 9 43 21 83 332
Total time 30 149 680 66 291 1400 486 1964 7954
Storage (MByte) 4.8 19.5 78.0 4.8 19.5 78.0 4.8 19.5 78.0

No. of particles = 10 =1000 =100 000

Level L=3 L=4 L=5 L=3 L=4 L=5 L=3 L=4 L=5

NSE part 16 77 330 16 77 336 14 67 262
Force part 0.1 0.4 1.5 0.1 0.5 1.8 0.2 0.7 2.8
Particle part 1 6 30 2 9 40 622 665 616
Total time 17 84 362 18 87 378 635 733 882
Storage (MByte) 4.5 18.5 74.2 4.6 18.6 74.7 5.7 20.0 75.7

one time step based on the described algorithms with and without the above techniques.
The size of computer memory (in MByte) required for each case is also listed in the
Table II, in which ‘NSE part’ means the time for the Navier–Stokes solver, ‘Force part’ for the
calculation of the hydrodynamic forces acting on the particles, ‘Particle part’ for the �ctitious
boundary setting and the calculation of the particle–particle and particle–wall collisions. We
can see the linear relation between CPU and storage cost w.r.t. the mesh size due to the
optimized multigrid components. Moreover, if the hierarchical techniques (or time reducing
hierarchical techniques) are not used, the CPU time for the force calculations, the �ctitious
boundary setting and the calculation of the collisions will signi�cantly grow with increasing
the number of particles and mesh re�nement. After adopting the hierarchical techniques, the
CPU time for the calculation of 100 000 particles is much less than for the calculation of
1000 particles without these techniques. Moreover, the computer memory storage required for
both cases is not signi�cantly increased. However, the CPU cost is (still) increasing for many
particles and requires further improvements of the algorithmic details. It can be expected that
together with more advanced collision models and more e�cient data structures, calculations
with even 1 000 000 particles and more is possible on modern PC.

4. NUMERICAL EXPERIMENTS

We present test con�gurations of benchmark character to evaluate and validate the presented
methodology. First of all, for the validation of hydrodynamic force calculations based on the
volume integration of Equation (12), a careful comparison between the results obtained by the
presented method and a standard body-�tted computation is performed for two con�gurations
of two-dimensional �ow around a circular body in a channel. The aim is to use the body
�tted computation as reference in order to assess the suitability and accuracy of the proposed
method. Then, �ows with one rotating and moving particle are examined to validate the
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Figure 2. Di�erent coarse meshes adopted for the simulations of �ow around a �xed circular cylinder:
(a) body-�tted mesh (Level= 1); and (b) Cartesian mesh (Level= 2) for the multigrid FBM.

calculated angular and translational velocities by the presented multigrid FBM. Finally, several
cases with two and many particles are analysed to check the quality of the collision model and
of the e�ciency of the FBM for simulation of particulate �ows with large numbers of particles.
The time step employed in all calculations is controlled automatically via an implicit estimation
of the local truncation error of �uid velocities and pressure (see Reference [23] for the details).
In all simulations, we prescribe the geometrical and �uid quantities in dimensionless form.

4.1. Flow around a �xed circular cylinder

In this subsection, we consider the benchmark case of �ow around a �xed circular cylin-
der in a channel as described in Reference [27]. Figure 2 shows a body-�tted mesh around
the circular cylinder as well as a Cartesian mesh (rectangular or rectilinear grid) for the
FBM, the coloured area shows the region occupied by the cylinder. The shown coarse
meshes are successively re�ned by connecting opposite midpoints. The channel height is
H =0:41, the cylinder diameter D=0:1. The centre point of the cylinder is located at (0:2; 0:2).
The Reynolds number is de�ned by Re= �UD=� with the mean velocity �U =2U (0; H=2; t)=3.
The kinematic viscosity of the �uid is given by �=�f =�f = 10−3 and its density �f = 1. The
in�ow pro�les are parabolic U (0; Y; t)=6:0 �UY (H−Y )=H 2 with di�erent �U =0:2 and �U =1:0
such that the resulting Reynolds numbers are Re=20 (steady case) and Re=100 (nonsteady
case), respectively. Table III gives the details for these meshes after several global re�ne-
ments. The meaning of ‘Level’ is the number of re�nements, ‘NVT’ the number of vertices,
‘NMT’ the number of edges (midpoints), ‘NEL’ the number of elements. The total number of
unknowns ‘NEQ’ is 2×NMT + NEL due to the nonconforming FEM data structures. Com-
pared to the body-�tted mesh, in the case of the �xed Cartesian rectilinear mesh, now the
cylinder shape is formed by the nodal points which cover the cylinder, instead by a mesh
line. ‘VEF’ means the ratio of the e�ective cylinder area covered by the �xed mesh with
respect to the real cylinder area. We can see that from Level¿4 on, we get an acceptable
shape de�nition.
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Table III. Details for sequentially re�ned meshes used for simulations of
�ow around a �xed circular cylinder.

Body-�tted mesh Cartesian mesh

Level NVT NMT NEL NEQ NVT NMT NEL NEQ VEF (%)

1 156 286 130 702 161 292 132 716 63.662
2 572 1092 520 2704 585 1112 528 2752 95.493
3 2184 4264 2080 10 608 2225 4336 2112 10 784 95.493
4 8528 16 848 8320 42 016 8673 17 120 8448 42 688 97.482
5 33 696 66 976 33 280 167 232 34 241 68 032 33 792 169 856 99.472
6 133 952 267 072 133 120 667 264 136 065 271 232 135 168 677 632 99.721
7 534 144 1 066 624 532 480 2 665 728 542 465 1 083 136 540 672 2 706 944 99.814

Table IV. Drag and lift coe�cients for �ow around a �xed circular cylinder with Re=20.

Body-�tted mesh Cartesian mesh

Level Drag coe�. Cd Lift coe�. Cl Drag coe�. Cd Lift coe�. Cl

3 5.5810 0.004834 5.3303 0.008090
4 5.5608 0.009112 5.4115 0.006530
5 5.5657 0.010163 5.4958 0.010070
6 5.5718 0.010473 5.5405 0.009799
7 5.5755 0.010525 5.5578 0.010147
Reference Cd = 5:5795 Cl = 0:010618

Figure 3. Specially adapted mesh used in the simulation of �ow around a
�xed circular cylinder (Level= 1).

We �rst test the steady case of Reynolds number Re=20. Table IV presents drag and lift
coe�cients by using the two di�erent meshes. From the table, we can see that all results are
convergent with respect to mesh re�nement, and the case of the �xed rectangular mesh can
reach almost the same results as for the body-�tted mesh, especially when the ‘area ratio’
VEF is greater than 95%. The corresponding reference results for this benchmark problem are
also listed in the table for comparison. As can be seen, there is a good agreement between
the presented method and the reference computations.
For the simple mesh in Figure 2(b), if we want to get more accurate results for Cd and

Cl, the mesh level should be greater than 6 (this means that NEL will be 540 672)! For
increasing accuracy and reducing NEL, we test an adapted mesh as shown in Figure 3, which
is re�ned near the wall surface of the cylinder. Table V shows the corresponding results for
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Table V. Drag and lift coe�cients for �ow around a �xed circular cylinder with
Re=20 by using the specially adapted mesh.

Level NEL Cd Cl

3 2344 5.569 0.0002
4 9376 5.575 0.0014
5 37 504 5.572 0.0081
6 150 016 5.578 0.0102
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Figure 4. Drag Cd and lift coe�cient Cl of one period for �ow around a �xed circular
cylinder with Re=100. Solid line is for body-�tted mesh, dash line for �xed Cartesian

mesh Level= 6, dot-dash line for �xed Cartesian mesh Level= 7.

Cd and Cl. We can see that this specially adapted mesh on level 3 with only NEL=2344
can already reach accurate results. Therefore, the accuracy can be increased while at the same
time the amount of computational work will not be raised if special adaptive mesh techniques
are adopted.
Next we perform unsteady �ow calculations with the higher Reynolds number Re=100

using the same meshes as in Figure 2. Similarly, the body-�tted mesh is used for the refer-
ence calculation while the �xed Cartesian mesh is for the presented FBM. In the reference
calculation, Level=7 of the body-�tted mesh is used, while for the case of the �xed Carte-
sian mesh, two meshes, Level=6 and 7, are employed. Figure 4 presents the drag and lift
coe�cients during one typical period of van Karman vortex shedding when the �ow is fully
developed. From this �gure, we can see that the FBM on the �xed Cartesian mesh can reach
almost the same results as in the case of the body-�tted mesh. The drag Cd and lift coe�cient
Cl, obtained on the coarser �xed Cartesian grid with Level=6 and on the �ner Level=7,
are more or less equal to those obtained from the reference calculation (see Figure 4).

4.2. A moving circular cylinder in a channel

The next level of di�culty is introduced when the cylinder is in motion relative to the
�xed background mesh. In order to be able to use the reference body-�tted computations
for comparison, the calculations will be carried out in a reference frame moving with the
cylinder in the case of the body-�tted mesh, whereas a reference frame �xed to the channel
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Figure 5. Di�erent coarse meshes adopted for a moving circular cylinder in a channel: (a) body-�tted
mesh (Level= 2); and (b) �xed Cartesian mesh (Level= 2).

Table VI. Details of the sequentially re�ned meshes used for a moving cylinder in a channel.

Body-�tted mesh Cartesian mesh

Level NVT NMT NEL NEQ NVT NMT NEL NEQ

1 40 68 28 164 161 292 132 716
2 136 248 112 608 585 1112 528 2752
3 496 944 448 2336 2225 4336 2112 10 784
4 1888 3680 1792 9152 8673 17 120 8448 42 688
5 7360 14 528 7168 36 224 34 241 68 032 33 792 169 856
6 29 056 57 728 28 672 144 128 136 065 271 232 135 168 677 632
7 115 456 230 144 114 688 574 976 542 465 1 083 136 540 672 2 706 944

will be used for the �xed Cartesian mesh. Both cases are equivalent if a velocity Um=2�f
A cos(2�ft); A=0:25, f=0:25 is imposed at the inlet part of the domain, and a slip velocity
Up=Um is de�ned on the channel walls in the body-�tted case (see Reference [9] for the
details). The cylinder is moved with a prescribed velocity Um and no-slip velocity conditions
are imposed at the two walls, inlet and outlet of the domain in the case of the �xed Cartesian
mesh. In Figure 5, the body-�tted mesh is shown for the reference calculation while the �xed
Cartesian mesh is taken for the presented FBM. In the reference calculation, the Level=7 of
the body-�tted mesh is used, while for the case of the �xed Cartesian mesh, four meshes on
Level=4 to 7 are employed. Table VI gives the geometrical details of the meshes in Figure 5
with di�erent numbers of re�ned levels.
Figure 6 illustrates the comparison of the drag coe�cient Cd and the lift coe�cient Cl

between the results of the presented FBM based on the �xed Cartesian mesh and the reference
calculation based on the body-�tted mesh. The results calculated from Level=4 to 7 are all
shown together (see Figures 6(a) and (b)). The corresponding coe�cients Cd and Cl for
one period between t=19:79 and 23.79 are shown in Figures 6(c) and (d), the solid line
represents the results of the reference calculation based on the body-�tted mesh at Level=7,
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Figure 6. Comparison of Cd and Cl between the FBM and body-�tted meshes
for a moving circular cylinder in a channel: (a) Cd of FBM; (b) Cl of FBM;

(c) one period of Cd; and (d) one period of Cl.

while the dash line denotes the results obtained by the presented FBM based on the �xed
Cartesian mesh at Level=7. We can see that the FBM results agree very well with the
reference results, although the FBM results exhibit small oscillations due to the nonaligned
cylinder movement in time over the �xed grid points. Compared to the previous case, the
grid re�nement has more in�uence onto the accuracy of the results. This is due to the fact
that when the cylinder is moving on the �xed background mesh, depending on the number of
nodes currently covered by the cylinder, its e�ective shape may change. However, the e�ect
of this change of shape on the computed forces is quite small.

4.3. One particle in a rotating circular container

Now we consider a particle with radius 1 centred in a circular container of radius 2 to validate
the angular velocity calculation by the presented FBM, starting from rest. The boundary
condition at the wall of the container imposes a rotation with an angular velocity !=0:01.
Then, the particle should start rotating with the same angular speed, i.e. the steady solution
is a rigid body rotation inside the container (including the particle) with the same angular
velocity !=0:01. The �uid density and the particle density are taken as �f =�p = 1. The mesh
for the present calculation has 9281 nodes and 9216 elements. Table VII gives the calculated
terminal angular velocity of the particle at steady state with respect to various values of the
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Table VII. The angular velocity at steady state for a particle in a rotating container.

Viscosity � Terminal angular velocity Time for reaching the steady state

0.001 0.0099185 7000
0.01 0.0099989 600
0.1 0.0099998 60
1.0 0.0099999 10

Figure 7. The motion of a particle in a rotating container: (a) velocity; and (b) streamline.

�uid viscosity �. We can see that the terminal angular velocity of the particle approaches
the terminal angular speed which matches that of the wall of the container. Figure 7 shows
the velocity distribution and the streamline contours at steady state with viscosity �=0:01.
Moreover, in Table VII, we also present the time needed for the particle to reach the steady
limit with di�erent viscosities. When the viscosity � becomes bigger, the particle can reach
the steady state much faster, the terminal angular velocity of the particle is also much closer
to the one of the wall of the container.

4.4. One rotating particle in a shear �ow

For further con�rmation of the angular velocity calculation, we consider a single, circular
particle placed in the middle between two walls. The radius of the particle is small compared
to the distance of the two walls. The channel height is H =6, the width is W =4 and the
radius of the circular particle varies from R≈ 0 to R=1. The �uid viscosity is set to �=0:01.
The �uid density is same as the particle density, i.e. �f =�p = 1. The centre point of the
particle is located at (2:0; 3:0). The left and right walls are supposed to move vertically with
velocities U =0:02 and −0:02 so that, without any particle, the stationary �ow would be a
linear shear �ow between the walls, with uniform vorticity �=0:01. The centre of the particle
is �xed, but it can rotate around its centre. The corresponding stationary �ow is such that the
angular velocity of the particle is !=−�=2=−0:005 when the radius of the circular particle
is small enough. An equidistant mesh with 222 145 nodes and 221 184 elements is used.
Table VIII presents the terminal angular velocity of the particle and the time needed to reach
the steady state with di�erent radii of the particles. Figure 8 shows the velocity distribution
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Table VIII. Terminal angular velocity at steady state for a rotating particle in
a shear �ow.

Radius of particle R Terminal angular velocity Time reaching the steady state

∼ 0 −0:0049993 230
1=20 −0:0049909 240
1=10 −0:0049837 250
1=5 −0:0049584 270
2=5 −0:0048697 310
1 −0:0043148 600

Figure 8. Norm of velocity distribution of a rotating particle in a shear �ow: (a) R≈ 0; (b) R = 1=20;
(c) R = 1=10; (d) R = 1=5; (e) R = 2=5; and (f) R = 1.

at steady state, and Figure 9 provides the evolution of the particle angular velocity in time
for di�erent radii R. It can be seen that the terminal angular velocity of the particle increases
until it approximates very well half of the vorticity of the �uid �eld. When the radius of
the circular particle becomes smaller, the terminal angular velocity approaches closer to this
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Figure 9. Angular velocity vs time for a rotating particle in a shear �ow.

Figure 10. Coarse mesh for �ow around a rotating NACA0012 airfoil (left is the global mesh, right is
a local zoom covering the airfoil at Level= 1).

value due to less disturbance of the �uid �eld, and the particle can also reach the steady state
much faster.

4.5. Flow around a rotating airfoil

The rigid particles considered so far have been circular disks. The main goal of the following
test problem is to show that the presented FBM can be easily applied to rigid bodies of more
complicated shape, still providing accurate results.
We consider incompressible viscous �ow around a NACA0012 airfoil that has a �xed centre

of mass and is free to rotate due to hydrodynamical forces (see the description in References
[2, 3]). Figure 10 shows the �xed Cartesian coarse mesh which is locally adapted, the coloured
area is the region occupied by the airfoil at rest; this coarse mesh is successively re�ned by
connecting opposite midpoints. Table IX gives the geometrical details for the re�ned meshes.
In the table, ‘Level’ is the number of global re�nements, ‘NVT’ the number of vertices,
‘NMT’ the number of edges (midpoints), ‘NEL’ the number of elements, ‘NEQ’ the total
number of unknowns. In this �xed Cartesian mesh, the airfoil shape is formed by the nodal
points which are inside the airfoil, instead of a mesh line. ‘VEF’ means the ratio of the
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Table IX. Details for sequentially re�ned meshes used for �ow around a rotating NACA0012
airfoil.

Level NVT NMT NEL NEQ VEF (%)

1 625 1220 596 3036 95.018
2 2441 4824 2384 12 032 97.393
3 9649 19 184 9536 47 904 99.769
4 38 369 76 512 38 144 191 168 100.14
5 153 025 305 600 152 576 763 776 99.973

Figure 11. Snapshot for �ow around a rotating NACA0012 airfoil with
Re=101: (a) vector �eld; and (b) vorticity.

e�ective airfoil area covered by the �xed Cartesian mesh compared with the real airfoil area.
We can see that from Level¿3 on, we get an acceptable shape approximation.
The surrounding region is the rectangle (0; 20)× (0; 4). The characteristic length, namely

the airfoil length, is 1.0089304 and the �xed centre of mass of the airfoil is at (0:420516; 2).
The shape of the NACA0012 is described as follows (for 06X61:0089304):

Y =0:6 · {0:2969 ·
√
X + X · [−0:126 + X · [−0:3516 + X · (0:2843− 0:1015 · X )]]} (18)

Initial angular velocity and angle of incidence are zero. The density of the �uid is �f = 1
and the density of the airfoil is �p = 1:1. The viscosity of the �uid is �f = 10−2. The initial
condition for the �uid velocity is u(0)=0 and the boundary conditions are given as u=0 when
y=0 or 4 and u=1 when x=0 or 20 for t¿0. Here, the Reynolds number is approximately
Re≈ 101 with respect to the length of the airfoil and the maximum in�ow speed [3]. In
these simulations, we start the calculation with Level=3, until it reaches a stable periodical
motion (here at t=42:05), then we change to Level=4 and continue the calculation based
on the initial values obtained from interpolation using the results of Level=3. Similarly, after
t=77:05, we change to Level=5 based on the results of Level=4. The �ow �eld and the
vorticity are shown in Figure 11. Figure 12 presents the history of the angular velocity ! and
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Figure 12. Computed data for �ow around a NACA0012 airfoil with Re=101. Dotted line
is for Level= 3, dashed line for Level= 4, solid line for Level= 5: (a) history of the angular

velocity !; and (b) history of the angle �.

the angle � of the airfoil corresponding to the three di�erent meshes. We observe that the
results are in excellent agreement with those obtained by Glowinski, Joseph and coauthors
[1, 3] and converge to a mesh independent solution after the �ow reaches a periodic motion.

4.6. Trajectory of a moving spinning ball

For verifying our multigrid FBM to simulate real particle motion with both free angular
velocities and translational velocities, we test a moving spinning ball. We begin the experiment
by pushing and spinning the ball impulsively, i.e. for time t¡0, everything is at rest; for
t=0+, the constant velocity v(0+)= v0 and rotational speed !(0+)=!0 are speci�ed. Huang
[28] has given the analytical result for the trajectory of such a moving spinning ball for t¿0.
For comparing with these results, we set the radius of the ball to R=1, �uid viscosity �=1,
�uid density �f = 1, density of the ball �p = 10, initial velocity of the ball U0 = 100; V0 = 0,
initial angular velocity of the ball !0 = 50. The computational domain is a su�ciently large
rectangle (−10; 30)× (−10; 20). For this test problem, we have chosen a uniform mesh with
di�erent sizes, namely �h=1=8 for Level=3 with 77 361 nodes and 76 800 elements, as well
as �h=1=16 for Level=4 with 308 321 nodes and 307 200 elements.
Figure 15 shows the computed data for the case �p = 10 by using the two di�erent meshes

with Level=3 and 4 which include (a) trajectory of the ball until time t=0:3, (b) history
of the moving ball angle, (c) history of the u-component of the velocity of the moving ball,
(d) history of the v-component of the velocity of the moving ball, (e) history of the angular
velocity of the moving ball, (f) history of the ratio (%) of the actual area of the moving
ball covered by the mesh with respect to the real area of the moving ball, (g) history of
the translational kinetic energy of the moving ball, ET =0:5M (u2 + v2), M is the mass of
the ball, u and v are the u-component and v-component of the velocity at the centre point
of the ball, (h) history of rotational kinetic energy of the moving ball, ER=0:5 I!2, I is the
moment of inertia of the ball, ! is the angular velocity of the ball. From these pictures, we can
see that the results of Level=3 are essentially the same as those for Level=4. The computed
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Figure 13. Trajectory for a moving spinning ball with di�erent densities at t=0:3. Dashed line is for
�p = 5, solid line for �p = 10, dot-dashed line for �p = 20 by using the Level= 4 mesh.

Figure 14. Contour plots of vorticity at t=0:3 for a moving spinning ball:
(a) �p = 5; (b) �p = 10; and (c) �p = 20.

results converge with respect to the mesh size and agree very well with the analytical results
of Reference [28].
By Newton’s 2nd law, we know that if we want to increase the change of direction of

the ball, we have to decrease the density of the ball �p. For checking this, we perform
two further calculations with �p = 5 and 20. Figure 13 provides the trajectories of the ball
until t=0:3 for the three cases of �p = 5, 10 and 20 by using Level=4. We can see that
when �p decreases, the trajectory of the ball becomes more steep and has a bigger curvature.
Figures 14 and 15 �nally shows the contour plot of vorticity at t=0:3 for the three di�erent
ball densities �p = 5, 10 and 20.

4.7. Single disk falling in an incompressible �uid

Next, we consider the numerical simulation of the motion of a circular disk falling in an
incompressible Newtonian viscous �uid to further validate our multigrid FBM. The test prob-
lem we perform is the following: The computational domain is a channel of width 2 and
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Figure 15. Calculated results for a moving spinning ball with �p = 10: (a) trajectory at t=0:3;
(b) angle � with time; (c) u-component with time; (d) v-component with time; (e) angular velocity
! with time; (f) e�ect volume ratio with time; (g) translational kinetic energy with time; and

(h) rotational kinetic energy with time.
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Figure 16. One circular disk falling down in an incompressible �uid: (a) t=0:34; (b) t=0:66;
and (c) t=0:79, from left to right.

height 6. A rigid circular disk with diameter d=0:25 and density �p = 1:25 is located at
(1; 4) at time t=0, and it is falling down under gravity in an incompressible �uid with den-
sity �f = 1 and viscosity �=0:1. We suppose that the disk and the �uid are initially at rest.
The simulation is carried out on two di�erent mesh sizes, i.e. �h=1=48 on Level=3 with
28 033 nodes and 27 648 elements, as well as �h=1=96 on Level=4 with 111 361 nodes
and 110 592 elements.
Figure 16 shows the velocity �eld computed with �h=1=96 on Level=4. We can see

that the circular disk quickly reaches a uniform falling velocity until it hits the bottom of the
channel. In Figure 17, some of the quantities are plotted in time. These are the y-coordinate
of the disk centre, v-component of the translational disk velocity, Reynolds number of the
disk de�ned by Re=

√
u2 + v2 ·d ·�p=�, and translational kinetic energy (ET =0:5M (u2 + v2),

M is the mass of the disk, u and v are the u-component and v-component of the velocity
at the centre point of the disk), as well as the rotational kinetic energy (ER=0:5 I!2, I is
the moment of the inertia of the disk, ! is the angular velocity of the disk), and the ratio
(%) of the e�ective area of the disk covered by the underlying �xed mesh compared with
the real area of the disk, for the two di�erent mesh sizes on Level=3 and on Level=4.
It can be seen, as expected, that the results on Level=4 show less numerical oscillations
than on Level=3. The maximum computed Reynolds numbers are 17.42 for Level=3 and
17.15 for Level=4 compared to the result of 17.31 provided by Glowinski [3]. We can see
that the results computed on the two di�erent mesh sizes are essentially the same except for
the case of the rotational kinetic energy due to its very small values (¡10−3) which is easily
disturbed by numerical errors.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:531–566



DIRECT NUMERICAL SIMULATION OF PARTICULATE FLOW 557

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

y

Level=3
Level=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-7

-6

-5

-4

-3

-2

-1

0

1

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

v

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 103

E
R

0

2

4

6

8

10

12

14

16

18

20

R
e

90

92

94

96

98

100

102

104

106

108

110

V
E

F
 (

\%
)

(a) (b)

(c) (d)

(e) (f)

Level=3
Level=4

Level=3
Level=4

Level=3
Level=4

Level=3
Level=4

Level=3
Level=4

Figure 17. One circular disk falling down in an incompressible �uid (�p = 1:25): time histories of:
(a) the y-coordinate of the particle centre; (b) v-component of the translational particle velocity;
(c) translational kinetic energy; (d) rotational kinetic energy; (e) Reynolds number for the disk; and
(f) the e�ective area ratio of the disk covered by the used equidistant mesh with respect to the real area

of the disk, dashed line for �h=1=48 (Level= 3), solid line for �h=1=96 (Level= 4).

4.8. Sedimentation of two circular particles

To examine the complete model, including the prevention of collisions, we study the sedi-
mentation of two circular particles in a two-dimensional channel, comparing the results with
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Figure 18. Sedimentation of two circular particles: (a) t=0:00; (b) t=1:13; (c) t=1:53; (d) t=1:73;
(e) t=2:44; (f) t=4:49; (g) t=6:23; and (h) t=7:57.

respect to two di�erent mesh sizes and regarding the results in Reference [3]. The computa-
tional domain is a channel of width 2 and height 8; the diameter of the particles is d=0:2.
The �uid and particle densities are �f = 1:0 and �p = 1:01, and the �uid viscosity is �=0:01.
The simulation is started at t=0 by dropping two particles at the centre of the channel at
height 7.2 (No. 1 particle) and 6.8 (No. 2 particle). The simulation is executed for two di�er-
ent mesh sizes, i.e. �h=1=48 on Level=3 with 37 345 nodes and 36 864 elements, as well
as �h=1=96 on Level=4 with 148 417 nodes and 147 456 elements, to check the quality of
the computed solutions with respect to the mesh size.
It is well known that when two particles are dropped close to each other, they interact by

undergoing ‘drafting, kissing and tumbling’ [29]. Figure 18 shows the visualization of the
characteristic behaviour (top �gures) of two falling particles, computed with �h=1=96 on
Level=4, providing also the corresponding velocity distribution (bottom �gures). From these
�gures, we can see that the particle in the wake (No. 1 particle) falls more rapidly than the
particle No. 2 in front since the �uid forces acting on it are smaller. The gap between them
decreases, and they almost touch (‘kiss’) each other at time t=1:13. After touching, the two
particles fall together until they tumble (t=1:53) and subsequently they separate from each
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Figure 19. Sedimentation of two circular particles: time histories of: (a) x-coordinate; (b) y-coordinate
of the particle centre; (c) u-component; (d) v-component of the translational particle velocity; and of (e)
the particle angular velocity; and (f) the particle angle of the particle, obtained for mesh size �h=1=48
(dot-dashed line for No. 1 particle, dotted line for No. 2 particle), and �h=1=96 (solid line for No. 1

particle, dashed line for No. 2 particle).

other (t=1:73). The tumbling of the particles takes place because the con�guration, when
both are parallel to the �ow direction, is unstable. The No. 1 particle is touching �rst the
bottom wall at t=6:23, while the No. 2 particle reaches the bottom wall at t=7:57.
In Figures 19 and 20, several quantities are plotted. These are the time histories of the

x-coordinate and y-coordinate of the two particle centres, u-component and v-component of
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Figure 20. Sedimentation of two circular particles: (a) trajectory at t=8; (b) time history of the ratio
(%) of the e�ective area of the two particles compared with the real area of the two particles; and of

(c) the translational as well as of; and (d) the rotational kinetic energy.

the particle translational velocities, the particle angular velocities and the particle angles, the
trajectories and the time histories of the ratio (%) of the e�ective area of the two particles
covered by the underlying �xed mesh compared with the real area of the two particles, as
well as the translational and rotational kinetic energy of the particles, obtained for the mesh
sizes �h=1=48 (Level=3) and �h=1=96 (Level=4). We can see that the results computed
on the two di�erent mesh sizes are essentially indistinguishable. Again, we can see that the
two particles are kissing each other at t=1:13. After kissing, they tumble, i.e. a manifestation
of the instability of a falling long body aligned with the stream. The No. 1 particle has
more translational kinetic energy, but less rotational kinetic energy than No. 2 particle. Both
particles reach their maximum energy values during the kissing and tumbling. The No. 2
particle rotates much more than the No. 1 particle. It can be seen, as expected, that the
accuracy on Level=4 is better than on Level=3. Moreover, all results compare qualitatively
well with those presented in References [3, 13, 19, 22]. However, there is still need for further
rigorous benchmarks for multiple particles.
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Figure 21. Velocity �eld for 790 particles with various diameters falling down in a cavity: (a) t=0:0;
(b) t=0:52; (c) t=1:06; and (d) t=1:60.

Figure 22. Velocity �eld for 790 particles with various diameters falling down in a cavity: (a) t=2:14;
(b) t=2:68; (c) t=4:02; and (d) t=6:19.

4.9. Sedimentation of 790 circular particles of various size

The following test problems di�er signi�cantly from the ones considered so far since a much
larger number of rigid particles is used. The aim of the subsequent simulations is to show
that the proposed methodology can handle much more complex con�gurations, too. We have
not found corresponding reference values (unless the calculations in Reference [3]), from
simulations or experiments so that we can only examine the qualitative behaviour.
The speci�c problem in this subsection is the sedimentation of 790 circular particles with

di�erent diameters falling down in a closed rectangular cavity. The width and height of the
cavity are 8 and 12. The 790 particles are placed at the top of the cavity with 20 rows.
In each row, the diameter of the particles is the same. The number of particles at the top row
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Figure 23. Velocity �elds for 3600 particles falling down in a cavity: (a) t=0:0;
(b) t=0:52; (c) t=1:06; and (d) t=1:60.

Figure 24. Velocity �elds for 3600 particles falling down in a cavity: (a) t=2:68;
(b) t=4:03; (c) t=7:75; and (d) t=11:18.

is 30, and then always add 1 particle to the next row. The maximum diameter of the particles
is 0.2396, and the minimum diameter is 0.1366. The range of the repulsive force is chosen
as �=0:02604. The position of the particles at time t=0 is shown in Figure 21(a). The
particles and the �uid are at rest at t=0. The density of the �uid is �f = 1 and the density
of the particles is �i=1:1 (i=1; : : : ; 790). The viscosity of the �uid is �=10−2. The details
of the mesh have been listed in Table I. The parameter �P in the collision model has been
taken equal to 5× 10−7, and �W = �P=2, �′P= �P, �

′
W = �W . The evolution of the 790 particles

is shown in Figures 21 and 22. A Rayleigh–Taylor instability develops in the advancing front
between t=0:52 and 1:60. At t=1:06, many complex vortices have been formed which pull
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the particles downward and mix each other with particles of di�erent size. Between t=2:14
and 2:68, some stronger eddies are formed which push the particles almost to the top of the
cavity. At the end, all particles have settled down to the bottom of the cavity, and the �uid
returns to rest.

4.10. Sedimentation of 3600 circular particles

Finally, we consider the sedimentation of 3600 circular particles with identical size falling
down in a closed rectangular cavity. The 3600 particles are placed at the top of the cavity
with 60 rows, while in each row the number of particles is 60. The diameter of the particles is
0.108. The range of the repulsive force is chosen as �=0:02502. The position of the particles
at time t=0 is shown in Figure 23(a). The particles and the �uid are at rest at t=0. The
density of the �uid is �f = 1 and the density of the particles is �i=1:1 (i=1; : : : ; 3600).
The viscosity of the �uid is �=10−2 (all quantities in nondimensional form). The mesh and
computational domain are the same as in the previous case of 790 particles. The parameter
�P in the collision model has been taken equal to 10−6, and �W = �P=2, �′P= �P, �

′
W = �W .

The evolution of the 3600 circular particles is shown in Figures 23 and 24. These �gures
clearly show the development of the Rayleigh–Taylor instability. This instability develops into
a �ngering and text-book phenomenon, and many symmetry breaking and other bifurcation
phenomena including drafting, kissing and tumbling take place at various scales in space and
time. Many vortices of di�erent size develop and the phenomenon is clearly ‘chaotic’. Finally,
the particles settle at the bottom of the cavity and the �uid returns to rest.

5. CONCLUSIONS

We have presented the multigrid FBM for the direct simulation of particulate �ows in 2D.
Since the method is based on ‘simple’ extensions of standard Navier–Stokes solvers, the 3D
case is quite straightforward and will be part of a forthcoming paper, as soon as we have
realized the proposed and analysed methodology in the 3D solvers of our CFD package Feat-
Flow [24]. The presented paper has mainly focused on the basic components of the FBM and
the numerical examples have benchmarking character to validate the proposed methodology
in the context of FEM discretization techniques and multigrid solvers.
The main advantage of the described FBM is that the solid particles, which are allowed to

have di�erent shape and size, can move freely through the computational mesh for the �uid
part which has not to change in time; however, the mesh can be aligned as we will demonstrate
at the end of this article. The proposed volume-based integration for the calculation of the
hydrodynamic forces acting on the moving particles is one of the key ingredients of the FBM,
and its accuracy has been proven by numerous comparisons between the presented results and
corresponding reference results from own computations or from the literature.
As a conclusion, this new approach can be easily incorporated into (almost) all CFD codes

without the need for additional (background) meshes for the particles or special interpolation
procedures since it only requires changes in the treatment of Dirichlet boundary conditions.
On the other hand, the applied (explicit) splitting approach renders the overall scheme to be
of �rst-order only; however, since complex con�gurations with numerous particles typically
require small time steps by physical reasons, the comparison with more implicit scheme, for
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Figure 25. Deformed meshes with di�erent ‘grid deformation’ parameters.

instance References [3, 22], is not yet clear, particularly with respect to the total e�ciency.
Hence, it is absolutely necessary to design approximate benchmarks for realistic particulate
�ows! Another advantage of this new approach is that very di�erent shapes and sizes of par-
ticles can be easily included; even discrete coalescence and breakup mechanisms are possible
and will be topic of a forthcoming paper.
The modi�ed collision model based on papers by Glowinski, Joseph, Singh and coauthors

with a new de�nition of a short range repulsive force cannot only prevent the particles from
getting too close to each other, it can also deal with those cases when the numerical simulation
brings the particles very close or even leads to overlapping. Special data structures and time
reducing techniques for handling the calculation of large numbers of particles are described to
enable the FBM to e�ciently solve for many particles. Consequently, one of the next aims is
to simulate in 2D up to 106 particles on a single PC=workstation while the corresponding 3D
module in FeatFlow will be based on a parallel implementation for such a high number of
particles. Furthermore, nonNewtonian and viscoelastic �uids (‘chaining’ instead of ‘kissing,
drafting, tumbling’, see Reference [3]) have to be tackled in the future and will be part of a
forthcoming paper.
We �nish this paper with a short remark concerning mesh adaptivity for a better approx-

imation of the particles. As we have shown, the use of the multigrid FBM does not require
to change the mesh during the simulations, although the particles vary their positions. The
advantage is that no expensive remeshing has to be performed while a �xed mesh can be
used such that in combination with appropriate data structures and fast CFD solvers very high
e�ciency rates can be reached. However, the accuracy for capturing the particles is only of
�rst-order which might lead to accuracy problems for the explicit calculation of the correct
�uid forces acting on the particles. One remedy could be to preserve the ‘mesh topology’,
for instance as generalized tensorproduct or blockstructured meshes, while a local alignment
with the particle surfaces is reached via special ‘grid deformation’ techniques. Preliminary
examples for the case of 2 particles can be found in Figure 25 which shows a deformed grid,
created from an equidistant Cartesian mesh. While the topology is preserved, only the grid
spacing is changed such that the grid points are concentrated near the particle surfaces. This
methodology is based on papers by Liao et al. [30, 31] and our paper [32] and requires only
the solution of additional linear Poisson problems in every time step which means that the
additional work is signi�cantly less than the total CFD part (see Table II). Therefore, we plan
to present the details of this special adaptive approach in a forthcoming paper.
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